

Integrating Game Mechanics into Health Management: A Systematic Synthesis of Health Gamification Research

Zhiyi Huang¹

¹Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan, Hubei, China
zhiyi@mails.ccnu.edu.cn

Keywords: Gamification, Health Management, Digital Health, Chronic Disease Management, Game Mechanics

Abstract: This review-based study systematically examines the basic concepts of gamification and its theoretical connections to health management. In response to the growing demand for digital health solutions, it first analyzes the current social context and the evolution of research on applying game mechanics in health management. The feasibility of gamification is explored from two perspectives: psychological motivation and technical implementation. Two representative case studies are then analyzed to assess the practical effects of gamification in both physical and mental health interventions. The findings reveal notable benefits but also highlight persistent limitations, including inadequate research methodologies and the neglect of user diversity. Based on these insights, the paper proposes future development directions, such as leveraging artificial intelligence to accommodate personal variation, building cross-contextual ecosystems, and strengthening privacy protections. Overall, this study provides systematic theoretical support and practical strategies for integrating gamification into digital health programs, aiming to advance the field toward a more scientific, sustainable, and human-centered trajectory.

1 INTRODUCTION

In modern society, healthcare issues are receiving growing public concern. According to statistics, one third of the population above 16 years old suffer long-term disease or healthcare problems (OECD, 2023). In the post-COVID-19 period, many individuals face ongoing health challenges like fatigue and sleep disorders, which intensifies the need for better health management strategies (Razak et al., n.d.). Public experiences deteriorating health status. High workload and quick modern life pace also negatively impact our physical and mental health. Unhealthy lifestyles, including smoking, lack of exercise, and poor diet are critical causes of these problems (Cao et al., 2018). Therefore, people need to actively manage positive lifestyles in order to maintain health.

Traditional health management suffered from patients' low adherence problems (Baryakova et al., n.d.), so how to effectively attract and encourage people to sustain health management is a current important problem. The introduction of game mechanisms brings new solutions to the field of

health management by making the once boring healthcare process an entertaining and challenging experience. Through this mechanism, users gain not only the entertainment and accomplishment, but also the promotion to adopt and sustain healthy habits.

Gamification was proposed around 2011 (Deterding, Dixon, Khaled, & Nacke, 2011). In recent years, gamification has been broadly utilized in various fields of study --- education, workplace, business, and healthcare.

Gamification has become progressively popular in the field of healthcare studies. Research gradually developed from article analysis to experimental application (Johnson et al., 2016). Even before the concept was proposed, scholars had been introducing gamified concepts such as credits, accomplishments, and rankings to health management, expecting to raise users' engagement and proactivity. Many papers that systematically analyze the contribution of game mechanisms in improving body health and healing were published between 2016 and 2018. However, these studies usually lack organized experimental design and long-term tracking (Sardi et al., 2017). From 2019 to 2021, some small-scale randomized controlled trials gradually tested the

positive effect of gamification on improving exercise habits, controlling blood pressure, and reducing sedentary behavior (Shameli et al., 2017).

Around 2022, with the rise of gamified applications of wearable devices and mHealth, research developed from single mechanic to multiple-mechanic combinations. Adopting techniques of meta-analysis and systematic quantitative review, it is demonstrated that gamification can significantly improve body activity level and health control activeness in the short term (Mazeas et al., n.d.). In recent years, studies further analyze mechanism comparison, long-term impact, and characterized design, and also gradually move from theoretical exploration to large-scale, empirically accurate health-intervention trials (Zhuang et al., 2025).

Although existing researches have proved that credits, ranking, virtual awards, and other game elements can excessively improve users' engagement and proactivity for health management. Under this background, this paper aims to systematically review and organize the development of gamification in the field of health management. Focusing on its theoretical fundament, core mechanism, and classical application, the study will thoroughly analyze how gamification impacts health activity through technology and psychological principles, also the defects in current stage research and future development paths.

Through above analysis, the paper expects to provide more systematic theoretical integration and practical inspiration for the gamification in health management field, and to set foundation for future relative academic study and innovative applications.

2 CONCEPTS

In recent years, "gamification" and "health management" are two core concepts in the research and application of digital health interventions. Their academic definition is crucial for subsequent theoretical discussions and empirical experiment.

2.1 Gamification

First, gamification, first proposed in 2008, was formally defined in academia by Deterding et al. in 2011 as: "the adoption of game design elements in non-game contexts to create gaming experience" (Deterding, Dixon, Khaled, & Nacke, 2011). The

key terms here are "non-game contexts" and "game design elements". "Non-game contexts" underscores that gamification does not involve creating full-fledged games, but rather the integration of points, badges, leaderboards, levels, real-time feedback, and other typical game mechanisms into real-world conditions. While the purpose of "game design elements" is to let users experience fun, challenge, and achievement, and thereby enhance their intrinsic motivations behind extrinsically-driven behaviors (Ryan & Deci, 2000).

In following researches, Werbach, Hunter, and other scholars further proposed that the purpose of gamification is to apply game mechanisms and narrative structures to help users acquire emotional engagement, social interaction, and immersive experiences in non-game environments, ultimately changing their attitudes or behaviors (Werbach & Hunter, 2012).

With technological advances, gamification has expanded beyond the traditional "PBL" model (Points, Badges, Leaderboards) to incorporate artificial intelligence, big data, wearable devices, and virtual reality into the mechanism. The advancements are able to achieve more precise, personalized, and real-time interventions (Hamari et al., 2014).

2.2 Health Management

Second, health management is a comprehensive concept that covers individual, institutional, and societal levels. According to the European Health Management Association (EHMA), health management is defined as: "a process of management and governance that coordinates personal behaviors, social support, and environmental resources through interdisciplinary strategies and multi-level collaboration to optimize health outcomes at the individual and population levels."

This definition reflects three core meanings:

Interdisciplinarity-integrating resources from multiple fields -- medicine, psychology, sociology, and information technology etc.

Systematicity-full-cycle, systematic management of health activities from health education, disease prevention, self-monitoring to chronic disease.

Goal-orientation-improving life quality and health levels through effective interventions.

In actual health management, one of the most challenging aspects is how to motivate individuals to

voluntarily and consistently maintain healthy behaviors, such as regular exercise, controlled diet, or medication adherence. Traditional external supervision and instruction often have limited effect. Hence, embedding gamification into the health management process is seen as a promising, innovative path to activate users' internal motivation and enhance their self-management efficacy and compliance (Johnson et al., 2016; Sardi, Idri& Fernández-Alemán, 2017).

2.3 Relationship

The two concepts complement each other, gamification provides health management with tools for behavior design and emotional engagement, while health management offers concrete application scenarios and practical needs for gamification. The two concepts are mutually supportive, jointly targeting the core goal of promoting healthy behavior change and optimizing health outcomes (Li et al., 2022; Mazeas et al., 2022).

Recent research expands to not only focus on both short-term outcomes, but also emphasize long-term effects and individual differences, pushing gamification from theories toward large-scale, scientific, and sustainable paths for health intervention.

3 FEASIBILITY ANALYSIS

Gamification health management is a new type of intervention that integrates psychology and digital interaction. Its effectiveness and feasibility have received widespread attention. Fundamentally, its operation is built on the support of psychological incentives and scientific technology.

3.1 Psychological Mechanisms

At the psychological level, gamification effectively stimulates users' motivation through the construction of challenging tasks, real-time feedback, reward systems and social mechanisms.

According to Self-Determination Theory (SDT), human motivation is fundamentally shaped by the satisfaction of three essential psychological needs: autonomy, competence, and relatedness (Deci & Ryan, 1985). The sign-in, level system, achievements and friends' leaderboards in health apps are designed around this theory. Users receive

positive feedback by achieving daily goals, which not only enhances the sense of accomplishment from their health behaviors, but also encourages continued use of the health management app.

In addition, the principle of positive reinforcement in behavioral psychology also provides a theoretical basis for gamification systems. When a healthy behavior is tied to immediate rewards (e.g., points, titles, achievements), users are more likely to repeat the behavior because of the sense of pleasure. For example, some water reminder apps trigger the growth of a virtual plant when users reach their goals, enhancing users' sense of autonomy through emotional connection. Research has also shown that gamified feedback can effectively improve user acceptance and long-term adherence to health interventions (Hamari et al., 2014).

3.2 Technology and Device Support

The fast development of mobile and wearable technologies also drives the rising application of gamified health management. In particular, Apple Watch, Fitbit, Huawei Watch and other devices have become the core carrier of health behavior tracking and feedback. Taking Apple Watch as an example, it can monitor steps, heart rate, activity intensity and sleep data, and share them with iOS health system or third-party apps to form a complete game mechanism, which helps users build healthy behaviors in daily life.

In addition, the popularity of mobile internet has made it possible to deploy gamified health apps widely on smartphones, reducing the difficulty of using these apps for users. Through the visual graphical interface and feedback mechanism, the game system is able to provide users with an immersive interactive experience.

Meanwhile, artificial intelligence and big data technology enable more comprehensive applications for gamification in health management. Through the learning of user behavioral data, the system is able to dynamically adjust the difficulty of the task, personalize the recommended health content, and improve the accuracy of intervention. For example, some AI-driven diabetes health management apps can analyze patients' blood glucose fluctuations in real time and provide matching exercise routines or meal plans. By presenting as "challenge tasks", they effectively motivate patients to finish healthy plans, improving treatment outcomes (Huang et al., 2023).

Thus, game-based health management is driven by both psychological mechanisms and technological tools. At the psychological level, game mechanics arouse users' active participation; at the technical level, intelligent devices and artificial intelligence provide continuous feedback and personalized support. This multi-system integration provides a sustainable and high-quality influence for health behavior interventions, and also creates conditions for the popularization of digital health technologies in everyday life.

4 ANALYSIS OF TYPICAL CASES

This article will analyze two very representative cases: the first demonstrates the Impact of behaviorally driven gamification strategies and social incentives on lifestyle changes in patients with type 2 diabetes, and the other is a gamification health management tool which focusing on building psychological resilience, and it's called SuperBetter. These two cases, starting from the dimensions of physiological and psychological health management, provide clearer and more in-depth insights into the application of game mechanics in healthcare.

4.1 Behavioral Economics-Driven Gamification Platform for Diabetes Management

The project came from a random controlled study in the US that involved 361 adult type 2 diabetes patients. Basically, the goal was to help them check their blood glucose levels more regularly. The intervention design integrates typical gamification elements as well as strategies from behavioral economics such as "loss aversion", "social norms", and "immediate feedback" creating a mobile platform that combines incentives, feedback, and social interaction.

During the intervention process, participants can earn points after recording their blood glucose levels everyday. Then join a group in a health challenge. The platform sets up various forms of positive feedback, such as updated leaderboards, virtual rewards, and unlocking of phased achievements, to strengthen patients' behavioral engagement. At the same time, by "rewarding first and gradually deducting for uncompleted tasks", this method stimulates patients' loss sensitivity and thus improves behavioral persistence.

The research showed that compared to the control group, the intervention group's frequency of daily blood glucose for 3 months significantly increased, and the HbA1c levels (Patel et al., 2017) had a slight decrease. This indicates that integrating behavioral economics principles into gamification platforms can not only enhance patients' interest and participation, but also have a positive impact on objective health indicators. This case provides a highly credible empirical basis for the gamification of chronic disease health management.

This case actually gets type 2 diabetes patients to adopt healthier habits by combining game elements—such as points, reward levels, and team-based competition—with behavioral economics strategies. It reflects the application of psychological mechanisms like immediate feedback and positive reinforcement, showing how gamification can enhance users' engagement. In addition, the platform makes use of mobile technologies to enable personalized and continuous behavior tracking. This case not only supports the theoretical framework but also illustrates a broader trend in health gamification—shifting from single incentives to an integration of multiple mechanisms.

4.2 SuperBetter: A Game Intervention Platform Built upon Psychological Resilience

SuperBetter, made by game designer Jane McGonigal, was initially used for her personal psychological reconstruction following brain injury recovery. It has since evolved into a digital platform widely applied in mental health problems such as stress management, anxiety, and depression intervention. Using "mission-challenge-ally support" framework, the platform endows users with the identity of "heroes" to enhance their abilities and positive mind in facing real-life difficulties.

The intervention logic of SuperBetter relies on positive psychology and cognitive behavioral therapy. Its mechanisms include setting micro-achievable tasks, acquiring "strength points", identifying "bad guys" etc. Users can invite friends and family to join the "allies" system, providing emotional support and task assistance, forming the atmosphere of social recognition and encouragement.

An empirical study involving users from diverse backgrounds revealed that after 30 days use of SuperBetter, users exhibited significant

improvements in psychological resilience, self-efficacy, depression, and anxiety levels. Such gamification platforms deeply integrate emotion regulation, goal-oriented approaches, and social support mechanisms, demonstrating that digital games are not only entertaining but also serve as effective tools for psychological intervention.

The SuperBetter platform employs a game design framework of “tasks-challenges-allies support” to effectively stimulate users’ autonomy and sense of belonging. It addresses the three basic psychological needs outlined in self-determination theory. By integrating positive psychology and cognitive behavioral therapy mechanisms, it emphasizes emotional regulation and social support, showcasing the unique advantages of gamification in mental health management. The platform’s successful application verifies the positive impact of game mechanics on enhancing users’ mental health and self-regulation ability, reflecting the advantage of gamification. This case expands the application boundaries of gamification in health, extending from physical health management to mental health interventions, illustrating the necessity and potential of interdisciplinary integration.

5 CURRENT RESTRAINTS AND POTENTIAL SOLUTIONS

5.1 Current Restraints

5.1.1 Limitations in Research Methods

Most current studies on health gamification still focused on small-sample, short-term experimental projects. There is a lack of systematic randomized controlled trials (RCTs) and long-term tracking data (Johnson et al., 2016). This makes it tough to get a full picture of whether the interventions will actually hold up over time and keep working consistently. Moreover, there is no unified standard for intervention content and evaluation metrics, making cross-study comparisons challenging (Sardi et al., 2017).

5.1.2 Inconsistent Design of Incentive Mechanisms

The design of gamification elements (points, badges, leaderboards etc) varies significantly across platforms, leading to large differences in incentive

structures and inconsistent user feedback (Seaborn & Fels, 2015). Some gamification designs lack deep integration with user behavior models and thus fail to continuously drive intrinsic motivation.

5.1.3 Neglect of Individual Differences Among Users

Gamified mechanism often apply uniform designs regardless of users’ age, cultural background, and health condition, overlooking individual differences (Hamari et al., 2014). As a result, the intervention may not effectively motivate individual users, reducing overall effectiveness.

5.1.4 Difficulty Maintaining Motivation

Many users are initially attracted by the novelty of gamification and hence participate actively. However, over time, if there’s lack of content update or new challenge mechanism, user engagement tends to decline rapidly—a phenomenon referred to as “gamification fatigue” (Koivisto & Hamari, 2019).

5.1.5 Privacy and Data Security Risks

Wearable devices and mobile health apps collect users’ behavioral data but also raise concerns about data privacy breaches. Health information is sensitive; without strict encryption and proper user authorization processes, these systems may trigger trust crises (Chiauzzi et al., 2015).

5.2 Future Development

5.2.1 Optimization of research methods

To properly assess whether behavioral interventions produce enduring effects, future work should focus on large, long-term RCTs employing longitudinal designs and the long-term effectiveness of interventions. Follow-up surveys and interviews should be incorporated after the intervention period to assess users’ continued engagement and the maintenance of healthy lifestyle behaviors. In addition, multi-center and stratified RCTs should involve diverse populations—such as adolescents and older adults. Individuals from different cultural backgrounds and health conditions should also be conducted to enhance the external validity and applicability of the findings. Furthermore, a standardized evaluation framework should be developed, incorporating multiple dimensions such

as behavioral change, physiological health indicators, and user satisfaction, to facilitate cross-study comparisons and comprehensive analysis.

5.2.2 Personalized design for users

To address the neglect of individual differences, future health gamification designs should focus more on personalization and dynamic adaptation. Artificial intelligence and big data analytics can be leveraged to build personalized user models based on behavioral data, enabling real-time adjustments in task difficulty, reward frequency, and feedback formats to create individualized intervention strategies (Rodrigues et al., 2021). In terms of cultural adaptation, localized narratives, symbols, and visual elements should be integrated to strengthen users' emotional engagement and cultural identification. A modular incentive system can be employed, allowing users to choose the style that suit their preferences—such as social collaboration, competition, or self-tracking. Additionally, builders should establish real-time feedback channels to continuously refine gamification mechanisms.

5.2.3 Integrated Multi-Scenario Ecosystems with Privacy Protection

Integrated multi-scenario ecosystems for gamification should extend beyond a single app or device to encompass home healthcare, community activities, and medical service platforms, thereby forming a multi-dimensional, coordinated system that promotes healthy behaviors. At the same time, such systems must embed the principle of "privacy by design" with clearly defined data collection boundaries, usage policies, and user authorization processes, ensuring compliance and safeguarding ethical integrity.

6 CONCLUSIONS

This paper, as a review-based study, systematically outlines the basic concepts of gamification and its theoretical connections to health management. It provides in-depth discussion on the feasibility of game mechanisms from two perspectives: psychological motivation and technical implementation. And through analyzing two typical case studies, it further examines the practically

effects of gamification in physical and mental health interventions.

Finally, the article highlights key limitations in current gamification research for health management, such as inadequate research methods and the neglect of individual differences. It also proposes future directions for development, such as leveraging AI to create personalized experiences and the strengthening of privacy protections. This paper aims to contribute theoretical clarity and practical strategies to support the integration of gamification into digital health programs, promoting its development along a more scientific, sustainable, and human-centered trajectory.

REFERENCES

Baryakova, Tsvetelina H., et al. "Overcoming barriers to patient adherence: the case for developing innovative drug delivery systems." *Nature Reviews Drug Discovery* 22.5 (2023): 387-409.

Cao, B., Bray, F., Ilbawi, A., & Soerjomataram, I. (2018). Effect on longevity of one-third reduction in premature mortality from non-communicable diseases by 2030: A global analysis of the sustainable development goal health target. *The Lancet Global Health*, 6(12), e1288–e1296.

Chiavazzi, E., Rodarte, C., & DasMahapatra, P. (2015). Patient-centered activity monitoring in the self-management of chronic health conditions. *BMC Medicine*, 13, Article 77.

Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. Plenum.

Deci, E. L., & Ryan, R. M. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. *Contemporary Educational Psychology*, 25(1), 54–67.

Deterding, S., Dixon, D., Khaled, R., & Nacke, L. E. (2011). From game design elements to gamefulness: Defining "gamification". In *Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments* (pp. 9–15).

Deterding, S., Dixon, D., Khaled, R., & Nacke, L. E. (2011). From game design elements to gamefulness: Defining "gamification". In *Proceedings of the 15th International Academic*

MindTrek Conference: Envisioning Future Media Environments (pp. 9–15).

Hamari, J., Koivisto, J., & Sarsa, H. (2014). Does gamification work? — A literature review of empirical studies on gamification. *2014 47th Hawaii International Conference on System Sciences*, 3025–3034.

Huang, Y., Sun, X., & Li, Z. (2023). Application of AI-driven gamification in diabetes self-management: Evidence from real-world interventions. *Digital Health Research*, 15(2), 134–149.

Johnson, D., Deterding, S., Kuhn, K. A., Staneva, A., Stoyanov, S., & Hides, L. (2016). Gamification for health and wellbeing: A systematic review of the literature. *Internet Interventions*, 6, 89–106.

Koivisto, J., & Hamari, J. (2019). The rise of motivational information systems: A review of gamification research. *International Journal of Information Management*, 45, 191–210.

Mazeas, A., Duclos, M., Pereira, B., & Chalabaev, A. (2022). Evaluating the effectiveness of gamification on physical activity: systematic review and meta-analysis of randomized controlled trials. *Journal of medical Internet research*, 24(1), e26779.

OECD. (2023). Health at a Glance 2023: OECD Indicators. *OECD Publishing*.

Patel, M. S., Asch, D. A., Rosin, R., Small, D. S., Bellamy, S. L., Heuer, J., ... & Volpp, K. G. (2017). Individual versus team-based financial incentives to increase physical activity: A randomized, controlled trial. *Journal of General Internal Medicine*, 31(7), 746–754.

Rodrigues, L., Toda, A. M., Oliveira, W., Palomino, P. T., Vassileva, J., & Isotani, S. (2021). Automating gamification personalization: To the user and beyond. *arXiv preprint arXiv:2101.05718*.

Sardi, L., Idri, A., & Fernández-Alemán, J. L. (2017). A systematic review of gamification in e-Health. *Journal of Biomedical Informatics*, 71, 31–48.

Seaborn, K., & Fels, D. I. (2015). Gamification in theory and action: A survey. *International Journal of Human-Computer Studies*, 74, 14–31.

Shameli, A., Althoff, T., Saberi, A., & Leskovec, J. (2017). How gamification affects physical activity: Large-scale analysis of walking challenges in a mobile app. *In Proceedings of the 26th International Conference on World Wide Web* (pp. 455–463).

Sk Abd Razak, R., Ismail, A., Abdul Aziz, A. F., Sudin, L. S., Azzeri, A., & Sha'ari, N. I. (2024). Post-COVID syndrome prevalence: a systematic review and meta-analysis. *BMC public Health*, 24(1), 1785.

Werbach, K., & Hunter, D. (2012). For the win: How game thinking can revolutionize your business. *Wharton Digital Press*.

Zhuang, X., et al. (2025). Effect of gamification on improved adherence to inhaled medications in COPD: Randomized controlled trial. *Journal of Medical Internet Research*, e65309.